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Analysis of high-loss viscoelastic composites 
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A theoretical study of the viscoelastic properties of composites is presented with the aim of 
identifying structures which give rise to a combination of high stiffness and high loss tangent. 
Laminates with Voigt and Reuss structures, as well as composite materials attaining the 
Hashin-Shtrickman bounds on stiffness were evaluated by the correspondence principre. 
Similarly, viscoelastic properties of composites containing spherical or platelet inclusions were 
explored. Reuss laminates and platelet-filted materials composed of a stiff, low-loss phase and 
a compliant high-toss phase were found to exhibit high stiffness combined with a high loss 
tangent. 

1. Introduction 
Viscoelastic materials can be of use in the damping of 
mechanical vibration and in the absorption of sound. 
Thc loss tangent, or tangent of the phase angle, ~, 
between stress and strain in sinusoidal loading, is 
a useful measure of material damping, Most materials 
used in structural applications, however, have small 
loss tangents. Conversely, materials with high toss 
tangcnts tend to be compliant, and hence they are not 
of structural intcrest. Fig. 1 contains a stiffness--loss 
map (plot of the absolute value of the dynamic 
modulus versus the loss tangent) for some represen- 
tative materials. Compliant, lossy materials are used 
as layers over stiff materials in various applications; 
nevertheless, a stiff material with high toss would be of 
use in the structural damping of noisc and vibration. 
This article considcrs the possibility of making com- 
posite microstructures providing high stiffness and 
high loss. 

A possible avenue for making high-loss compositcs 
is to make use of nou-afllnc deformation. This is in 
contrast to at'fine deformation in which thc particles in 
the solid move in a way corresponding to a uniform 
strain plus a rotation in a continuum. The materials 
developed by Lakes [1] with negative Poisson's ratios 
exhibit this property in that foam cells unfold during 
deformation [2, 3]. Non-affine deformation can result 
in high viscoelastic loss in a composite if the phase 
which has the highest loss expcriences a larger strain 
than does the composite as a whole. 

The elastic propertics of multi-phase composite ma- 
terials have been studied extensively. Of these studies, 
the most relevant to the present work are those deal- 
ing with bounds on the elastic behaviour and pre- 
dicted propcrties of composites of relatively simple 
structure. The upper and lower bounds of stiffncss of 
two-phase and many=phase composite materials have 
bcen obtained in terms of the volume fractions of 
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constituents [4, 53. Bounds and expressions for the 
effective elastic moduli of materials reinforced by par- 
allel, hollow, circular fibres in hexagonal or random 
arrays have also been derived by a variational method 
[45]. Furthermore, bounds on three independent effec- 
tive elastic moduli of a n-phase fibrc-reinforced 
composite of arbitrary transverse phase geometry 
(plane-strain bulk modulus, transverse-shear modulus 
and shear-modulus-in-plane-parallel-to-fibres) have 
been derived in terms of phase votume fractions [6]. 
For viscoclastic heterogeneous media of several dis- 
crete linear viscoelastic phases with known stress- 
strain relations, it has been shown that the effective 
relaxation and creep functions could be obtained by 
the correspondence principle of the theory of linear 
viscoelasticity [7]. in some cases explicit results in 
terms of gcneral, linear, viscoelastic matrix properties 
have bcen given, thus permitting the direct use of 
experimental information [8]. In a review of partic- 
ulatc-reinforcement theories for polymer composites, 
it was concluded that the macroscopic behaviour was 
affected by the size, shape, distribution, and interracial 
adhesion of inclusions [9]. This article makes use of 
some of these results for elastic composites in explor- 
ing accessible regions of the stiffness-loss maps of the 
materials, 

2. Elastic and viscoelastic properties 
of composites 

For the simplest case of a two-phase composite, the 
Voigt and Reuss composites described below repre- 
sent rigorous upper and lower bounds on the Young's 
modul us for a given volume fraction of one phase. The 
Hashin Shtrickman composites represent upper and 
lower bounds for isotropic elastic composites. Visco- 
elastic composites containing spherical or platelet in- 
clusions are also considered. Results obtained via the 
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correspondence principle are plotted as stiffness-loss 
maps in Section 3. 

2.].  Voigt composi te  
Let phase 1 denote stiff, and phase 2 denote high loss. 
The geometry of a Voigt model structure is shown in 
Fig. 2. The composite can contain laminations as 
shown in Fig. 2a or it can be made of continuous fibres 
as in Fig. 2b; in either case the strain in each phase is 
the same. For an elastic material with one of these 
structures, the Voigt relation is E~ = E~ V1 + E2 1/2, in 
which E,, El and E2 refer to the Young's modulus of 
the composite, phase 1 and phase 2; and V~ and V2 
refer to the volume fraction of phase 1 and phase 2, 
with V~ + Vz = 1. The Voigt relation for the stiffness 
of an elastic composite is obtained by recognizing that 
for the given geometry, the strain in each phase is the 
same; the forces in each phase are additive. 

By the correspondence principle [10, 11], the elastic 
relation can be converted to a steady state, harmonic, 
viscoelastic relation by replacing Young's moduli, E, 
by E*(io) or E*, in which co is the angular frequency 
of the harmonic loading. This procedure gives 

E* = E'I/1 + E~V2 (1) 

with E* = E' + i t"  and loss tangent tan8 = E"/E'. 
Taking the ratio of real and imaginary parts, the loss 
tangent of the composite, tan 8~ = E~/E'~, is obtained. 

Vltan81 + V2(E'2/E'l)tan82 
tan 8~ = (2) 

E' E' Vl + ( 2/ 1)V2 
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Figure l Stiffness versus loss tangent for some representative mater- 
ials at or near room temperature. Steel, 1 Hz [17]; copper, 600 Hz 
[17]; polymethyl methacrylate (PMMA), 10 Hz find 1 kHz [18]; 
bone, 1-100 Hz, [19]; hevea rubber, 10 Hz to 2 kHz [18]; poly- 
styrene, 100 Hz, 1 kHz [18]; polycarbonate, 100 Hz [20]; and visco- 
elastic elastomer, 100 Hz to 1 kHz 1-21]. 

[a) (b) (c) 

Figure 2 (a) Laminated Voigt structure, (b) fibrous Voigt struc- 
ture, and (c) Reuss structure. 

2.2. Reuss composi te  
The geometry of the Reuss-model structure is shown 
in Fig. 2c; each phase experiences the same stress. For 
elastic materials, 1/Er = VI/E~ + V2/E2. Again, using 
the correspondence principle, the viscoelastic relation 
is obtained as 

1 Va V2 
~* - E* + ~-~ (3) 

Separating the real and imaginary parts of E*, the loss 
tangent of the composite, tan ~o is obtained 

in which K1, G: and V~, and K2, G2 and V2 are the 
bulk modulus, shear modulus and volume fraction of 
phases 1, and 2, respectively. Here G1 > G2, so that GL 
represents the lower bound on the shear modulus. 
Interchanging the numbers 1 and 2 in Equation 5 re- 
sults in the upper bound, Gu, for the shear modulus. 

As for viscoelastic materials, if the correspondence 
principle is applied, then the complex viscoelastic 
shear moduli of the composite, G*L and G*, are 

(tan31 + tanSz)(V1 + V2E'I/E'2) - (l - tanS~tan32)(Vltan82 + V2tanS~E'l/E'2) 
tan 6o = (4) 

(1 - tan81tan62)(V1 + V2E'I/E'2) + (tanS1 + tan62)(V1tan82 + V2tan81E'l/E'2) 

2 .3 .  H a s h i n - S h t r i c k m a n  c o m p o s i t e :  a r b i t r a r y  

t w o - p h a s e  g e o m e t r y  

Allowing for arbitrary phase geometry, the upper and 
lower bounds on the elastic moduli as a function of 
composition have been developed using variational 
principles. The lower bound for the shear modulus, 
GL, of the composite was given in I-5] as 

vl 
GL = G2 + (5) 

1 6 ( K  2 + 2G2)V2 + 
G1 - G2 5(3K2 + 4G2)G2 

4 3 0 0  

obtained as 

G~ = G~ + 

and 

~ = ~ ,  + 

v~ 
1 6(K* + 2G~)V2 + 

GI* - G* 5(3K~ + 4G*)G* 

(6) 

V2 (7) 
1 6(K* + 2G*)V1 

+ 
G* - G* 5{3K* + 4G*)G* 

In these cases the loss tangent is more complicated to 
write explicitly, so it is expedient to graphically dis- 
play computed numerical values. 



2.4. Hashin transversely isotropic fibre- 
reinforced composite 

This case is of interest since it allows more than two 
phases; a situation applicable to the analysis of experi- 
mental results in a companion article. For two phases 
the results are almost identical to the arbitrary-phase- 
geometry case considered above. The shear modulus 
of elastic multi-phase transversely isotropic fibre-rein- 
forced composites of arbitrary transverse phase geo- 
metry, can be bounded from below and above in terms 
of phase moduli and phase volume fractions. The 
lower and upper bounds on the shear modulus m (-) 
and m (+) were given for elastic composites in [6] as 

2Gl(K1 + G1) 
m (-~ = G~ + 

K1 + 2G1 

~" G1 + K~G1/(K1 + 2G1) 
(8) • 

t. h r = 2  

and 

2G,(K, + a,)  
m (+) = G, + 

K ,  + 2G, 

x f [ r=~ -I (G,-  G,)Vr 1-1 - 1}-1 (9) 
~t_ ~=~ G. + K.G,,/(K. + 2G.) 

in which n is the number of the phases, G1 and K~ are 
the shear and bulk moduli of the most compliant 
phase, G. and K. are the shear and bulk moduli of the 
stiffest phase, r is a free index representing the phase 
number and phases are numbered in order of increas- 
ing stiffness. 

On the basis of the correspondence principle, cor- 
responding results for the complex shear modulus (not 
necessarily bounds) of the composites are again ob- 
tained by replacing m (-), m (+), G~, K~, G~ and G, by 
G*, G*, G*, K*, G* and G* in Equations 8 and 9. 
The loss tangent is again complicated to write expli- 
citlyl so it is graphically displayed using computed 
numerical values. 

2.6. Platelet  inc lus ions  
For a dilute suspension of platelet elastic inclusions of 
phase 2 in a matrix of phase 1, the shear modulus of 
the composite Gc was given in [12] as 

V2(G2 - G1) 
Gc = G I +  

15 

19K2 + 4(G1 + 2G2) G~I 
x K 2 4- 4 G  2 4- 6 (12) 

Again, using the correspondence principle, Equation 
12 becomes 

V2(G~ - 67)  
G*~ = 6 7 +  

15 

I9K~ + 4(G* + 2G*) G*~ 
4 . + 6  (13) 

x K* -I- 3-G2 G*J 

for the complex shear modulus of the composite 
materials. 

As for procedure, although Equations 5-13 were 
developed for the shear modulus of the composite, the 
shear moduli, G*, were replaced by Young's moduli, 
E*, in the figures for comparison with Fig. 1. The 
Voigt and Reuss relations given by Equations 1 and 
3 apply to G* as well as to E*. The actual relationship 
between E* and G* and the properties of the constitu- 
ents of a composite is simple only for certain phase 
geometries. For example, for some common phase 
geometries, a Poisson's ratio of 0.3 for each phase 
gives a Poisson's ratio close to or equal to 0.3 for the 
composite. However for some other phase geometries, 
a constituent Poisson's ratio of 0.3 can give rise to 
a negative Poisson's ratio in cellular solids with one 
phase void [1] or in unusual laminates [13]. The 
calculations are on the basis that //1 + V2 = 1 except 
that V1 + //2 = 0.8 for the multi-phase Hashin elastic 
bound, for which a 20% void volume fraction is 
assumed to be contained as a third phase in the 
composite. 

2.5. Spher ica l  par t icula te  inc lus ions  
For a small volume fraction V2 = 1 - //1 of spherical 
elastic inclusions in a continuous phase of another 
elastic material, the shear modulus of the composite 
Gc was given in [12] as 

Go 15(1 - v l ) ( 1  - G2/G~)V2 
- l -  (10) 

GI 7 - 5vl + 2(4 - 5Vl)Gz/G1 

in which Vl is Poisson's ratio for phase 1; and phase 
1 and phase 2 denote the matrix material and the 
inclusion material, respectively. 

Using the correspondence principle again, and as- 
suming there is no relaxation in Poisson's ratio, Equa- 
tion 10 becomes 

15(1 - v,)(G* - G~)V 2 
G~* = G T -  (11) 

7 - 5vi + 2(4 - 5vl)G2/GI 

for the complex shear modulus of the composite ma- 
terial. The loss tangent is again complicated to write 
explicitly, so it is graphically displayed using com- 
puted numerical values. 

3. Results and discussion 
Results are plotted as stiffness-loss maps (plots of IE*[ 
versus tan 6) as shown in Figs 3 to 5. 

Fig. 3 shows predicted properties of composites 
containing phases which differ greatly in properties. 
Steel is considered as phase 1, with I E]'] = 200 GPa, 
tan 6l = 0.001, and a viscoelastic elastomer is phase 2, 
with [E* t = 0.020GPa, tan52 = 1.0. The graph of 
Fig. 3 was enlarged for clarity in the vicinity of 100% 
phase 1 and is shown in Fig. 4. A small volume 
fraction of phase 2 results in a large increase in loss 
with little reduction in stiffness, so that the Reuss 
structure permits higher losses than the Voigt struc- 
ture. However, in the Reuss structure each phase car- 
ries the full stress, so that a composite Of this type will 
not be strong if, as is usual, the soft phase 2 is weak. 

As for bounds on the properties, the curves for the 
Voigt and Reuss composites enclose a region in the 
stiffness-loss map, as do the curves for the upper and 
lower Hashin-Shtrickman composites. It is tempting 
to think of these curves as bounds on the viscoelastic 
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Figure 3 Stiffness-loss map for composites where steel is phase 1 and viscoelastic elastomer is phase 2: ( x ) Voigt curve, ( + ) Reuss curve, (0) 
two-phase Hashin curve, (~) upper curve of three-phase Hashin composite with 20% voids as one phase, (O) composite with phase 2 as 
dilute spherical inclusions, and (E3) composite with phase 2 as dilute platelet inclusions. (V~ is the volume of inclusions.) 

behaviour; however, such a surmise has not been 
proven. They represent extremes of composites which 
can be fabricated; however, it is not yet known if they 
represent true bounds. The bounds for the real and 
imaginary parts E' and E" of the complex modulus of 
composites has been mathematically established and 
shown to be equivalent to the Voigt and Reuss rela- 
tions [14]. Therefore the stiffness, expressed as IE*I of 
the composite is bounded from above by the Voigt 
limit and cannot exceed the stiffness of the stiff phase. 
This is not quite the same as establishing bounds for 
a stiffness-loss map since it is not obvious whether 
a maximum in tan ~ = E"/E '  could be obtained simul- 
taneously with a maximum in E'. In particular, 
tan 6c = E'~oigt/E~ .... > E R  . . . .  /EIR . . . .  can be construc- 
ted within the bounds of Roscoe. It is not yet known if 
such a composite is physically realizable. 

In the stiffness-loss map, the lower and upper two- 
phase Hashin composites behave similarly to the 
Voigt and Reuss composites, respectively. This is in 
contrast to the usual plots of elastic stiffness against 
volume fraction, in which the Hashin bounds can 
differ greatly from the Voigt/Reuss bounds. As for the 
physical attainment of Voigt and Reuss composites, 
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simple laminates can be made as in Fig. 2, but these 
are anisotropic. Isotropic composites which attain the 
Voigt or Reuss moduli are not considered to be attain- 
able. Isotropic polycrystals attaining the Voigt 
or Reuss bounds for the bulk modulus are also pos- 
sible [15] at the expense of some added structural 
complexity. 

For the three-phase Hashin structure with a 20% 
void content in the composite, the lower curve reduces 
to zero and is not shown in the graph; the upper 
bound lies close to the Voigt curve with a 20 to 40% 
lower stiffness as shown in Fig. 3. 

The composite containing soft spherical inclusions 
is also found to behave similarly to the Voigt com- 
posite, in that a small volume fraction of soft, visco- 
elastic material has a minimal effect on the loss 
tangent, though it does reduce the stiffness. As for the 
composite containing soft platelet inclusions, it is 
found that the results are similar to those of the Reuss 
structure. A small volume fraction of platelet inclu- 
sions as phase 2 results in a very large increase in loss 
tangent without any significant reduction in the stiff- 
ness. However, soft platelets resemble penny-shaped 
cracks in the matrix, so that such a composite would 
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Figure 4 Stiffness loss map for composites where steel is phase 1 and viscoelastic elastomer is phase 2; this is an expanded plot of the upper 
left-hand portion of Fig. 3; ( x ) Voigt curve, ( + ) Reuss curve, ( ~ )  upper curve of three-phase Hashin composite with 20% voids as one phase, 
(O) composite with phase 2 as dilute spherical inclusions, and (D) composite with phase 2 as dilute platelet inclusions. (V~ is the volume of 
inclus!ons.) 

be weaker than the matrix, particularly if the matrix 
were brittle. 

Fig. 5 shows the predicted properties for com- 
posites containing phases which differ less in their 
properties than steel and viscoelastic elastomers. Cop- 
per as phase 1, with [E*I = 117 GPa, tan6t  = 0.002 
and indium as phase 2, with IE*f= 10.8GPa, 
tan (~2 = 0.025 (at 1 kHz) were used for this investiga- 
tion. Observe that the shape of this stiffness-loss map 
differs from the case of the polymer-metal composite. 
The implication of this difference in shape is as fol- 
lows. If the constituents differ by orders of magnitude 
in stiffness and loss, then the Reuss and platelet com- 
posites are orders of magnitude superior to the Voigt 
and spherical inclusion composites in achieving high 
stiffness and high loss. If the constituents do not differ 
as much in their properties, then their composites of 
various structures do not differ as much either. Com- 
posites containing a stiff, low-loss material (such as 
a metal) and a small amount of a compliant, high-loss 
material can exhibit a stiffness close to that of the 
metal, as well as a high loss superior to that of 
a metal-metal composite. 

An interesting aspect of the Reuss and platelet com- 
posites which give the highest loss (for given stiffness) 
is that they exhibit highly non-uniform strain fields. 
The strain in the soft, lossy phase is much larger than 
the strain in the stiff phase. This is in contrast to the 
Voigt composite in which the strain in each phase is 
the same. The re-entrant foams [16] with a negative 
Poisson's ratio also exhibit non-affine deformation of 
a more complex nature in that the foam cells unfold as 
the foam is deformed. 

4. C o n c l u s i o n s  
1. In a stiffness-loss map, the upper and lower 

two-phase Hashin composites behave similarly to the 
Voigt and Reuss composites, respectivelY. 

2. Reuss laminates and platelet-filled materials 
based on a stiff, low-loss phase and a compliant high- 
loss phase were found to exhibit high stiffness com- 
bined with a high loss tangent. However, in the Reuss 
structure each phase carries the full stress, so that 
a composite of this type will not be strong if, as is 
usual, the compliant phase is weak. 

4 3 0 3  
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Figure 5 Stiffness-loss map for composites where copper is phase 1 and indium is phase 2: ( x ) Voigt bound, ( + ) Reuss curve, (0 )  two-phase 
Hashin curve, ( ~ )  upper curve of three-phase Hashin composite with 20% voids as one phase, (�9 composite with phase 2 as dilute spherical 
inclusions, and (~)  composite with phase 2 as dilute platelet inclusions. (V~ is the volume ot'inctusions.) 

3. A composite containing soft lossy spherical in- 
clusions in a stiff matrix behaves similarly to the Voigt 
composite, i.e. it has low loss and a reduction in 
stiffness. 

4. Composites containing a metal and a small 
amount of a compliant, high-loss polymer can in prin- 
ciple exhibit a stiffness close to that of the metal, as 
well as high loss. 
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